Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34.996
Filter
1.
J Int Med Res ; 52(5): 3000605241247707, 2024 May.
Article in English | MEDLINE | ID: mdl-38717029

ABSTRACT

Lipopolysaccharide (LPS) is widely used to establish various animal models, including models of acute lung injury, cardiomyocyte damage, and acute kidney injury. Currently, there is no consensus on the diagnosis and treatment of LPS-induced disease. We herein present a case series of four patients who developed dose-dependent multi-organ injury, including acute lung injury and acute kidney injury, after inhaling LPS gas in a sealed room. These patients exhibited varying degrees of multi-organ injury characterized by inflammatory cell infiltration and secretion of proinflammatory cytokines. One patient showed progressive symptoms even with active treatment, leading to mild pulmonary fibrosis. This study emphasizes the importance of early diagnosis and treatment of significant LPS exposure and suggests personalized treatment approaches for managing LPS poisoning.


Subject(s)
Lipopolysaccharides , Humans , Male , Middle Aged , Female , Adult , Multiple Organ Failure/etiology , Multiple Organ Failure/chemically induced , Administration, Inhalation , Acute Lung Injury/chemically induced , Acute Kidney Injury/chemically induced , Cytokines/metabolism , Aged , Dose-Response Relationship, Drug
2.
BMC Pulm Med ; 24(1): 226, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724947

ABSTRACT

BACKGROUND: Inhaled nitric oxide (iNO) selectively acts on the pulmonary vasculature of ventilated lung tissue by reducing pulmonary vascular resistance and intrapulmonary shunt. This effect may reduce ventilation/perfusion mismatch and decrease pulmonary hypertension in patients with interstitial lung disease. METHODS: In a prospective, single-blinded, randomized, placebo-controlled trial, participants with advanced interstitial lung disease, underwent two separate six-minute walk tests (6MWT): one with iNO and the other with a placebo. The primary outcome measured the difference in meters between the distances covered in the two tests. Secondary outcomes included oxygen saturation levels, distance-saturation product, and Borg dyspnea score. A predefined subgroup analysis was conducted for patients with pulmonary hypertension. RESULTS: Overall, 44 patients were included in the final analysis. The 6MWT distance was similar for iNO treatment and placebo, median 362 m (IQR 265-409) vs 371 m (IQR 250-407), respectively (p = 0.29). Subgroup analysis for patients with pulmonary hypertension showed no difference in 6MWT distance with iNO and placebo, median 339 (256-402) vs 332 (238-403) for the iNO and placebo tests respectively (P=0.50). No correlation was observed between mean pulmonary artery pressure values and the change in 6MWT distance with iNO versus placebo (spearman correlation Coefficient 0.24, P=0.33). CONCLUSION: In patients with advanced interstitial lung disease, both with and without concurrent pulmonary hypertension, the administration of inhaled nitric oxide failed to elicit beneficial effects on the six-minute walk distance and oxygen saturation. The use of inhaled NO was found to be safe and did not lead to any serious side effects. TRIAL REGISTRATION: (NCT03873298, MOH_2018-04-24_002331).


Subject(s)
Exercise Tolerance , Hypertension, Pulmonary , Lung Diseases, Interstitial , Nitric Oxide , Walk Test , Humans , Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/physiopathology , Nitric Oxide/administration & dosage , Male , Female , Administration, Inhalation , Middle Aged , Aged , Prospective Studies , Exercise Tolerance/drug effects , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/physiopathology , Single-Blind Method , Oxygen Saturation
3.
NPJ Prim Care Respir Med ; 34(1): 10, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729942

ABSTRACT

This study aimed to investigate the real-world standardisation and adherence of medical treatment regimens in patients with chronic obstructive pulmonary disease (COPD) in the community for making future management strategy. The follow-up data and treatment information of patients with COPD, which were collected through the Management Information Center of COPD (MICCOPD) in 21 community health service centres in Songjiang District, a countryside region of Shanghai. Concordance between the pharmaceutical treatment plan and recommendation of 2017 Global Initiative for Chronic Obstructive Lung Disease (GOLD) report during the follow-up management period, as well as the medication adherence by patients,were analysed. Out of the 2044 patients diagnosed with COPD, 814 patients (39.8%) who had an initial record of medication use were found to meet the inclusion criteria. The most common medication regimens were long-acting beta-agonist plus inhaled corticosteroids (35.9%) and oral bronchodilators (41.9%). Among these 814 patients, 45.7%, 38.0%, 31.6% and 14.6% adhered to the treatment after 6, 12, 18 and 24 months of follow-up, respectively. The concordance rate with the regimens recommended by the 2017 GOLD guidelines was 35.5% at baseline, 35.5% at 6 months, 32.7% at 12 months, 35.4% at 18 months and 37% at 24 months. The compliance and guideline consistency rates of patients with COPD in the community under the management of general practitioners need to be improved. Enhancing general practitioner proficiency in the prevention and management of COPD and increasing patient awareness of the condition, are crucial standardising and improving adherence to initial and follow-up COPD treatments.


Subject(s)
Bronchodilator Agents , Medication Adherence , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/drug therapy , Male , Female , Aged , Middle Aged , Medication Adherence/statistics & numerical data , Bronchodilator Agents/therapeutic use , China , Internet , Adrenal Cortex Hormones/therapeutic use , Adrenergic beta-Agonists/therapeutic use , Administration, Inhalation
4.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731891

ABSTRACT

The past five decades have witnessed remarkable advancements in the field of inhaled medicines targeting the lungs for respiratory disease treatment. As a non-invasive drug delivery route, inhalation therapy offers numerous benefits to respiratory patients, including rapid and targeted exposure at specific sites, quick onset of action, bypassing first-pass metabolism, and beyond. Understanding the characteristics of pulmonary drug transporters and metabolizing enzymes is crucial for comprehending efficient drug exposure and clearance processes within the lungs. These processes are intricately linked to both local and systemic pharmacokinetics and pharmacodynamics of drugs. This review aims to provide a comprehensive overview of the literature on lung transporters and metabolizing enzymes while exploring their roles in exogenous and endogenous substance disposition. Additionally, we identify and discuss the principal challenges in this area of research, providing a foundation for future investigations aimed at optimizing inhaled drug administration. Moving forward, it is imperative that future research endeavors to focus on refining and validating in vitro and ex vivo models to more accurately mimic the human respiratory system. Such advancements will enhance our understanding of drug processing in different pathological states and facilitate the discovery of novel approaches for investigating lung-specific drug transporters and metabolizing enzymes. This deeper insight will be crucial in developing more effective and targeted therapies for respiratory diseases, ultimately leading to improved patient outcomes.


Subject(s)
Lung , Membrane Transport Proteins , Humans , Administration, Inhalation , Lung/metabolism , Membrane Transport Proteins/metabolism , Animals , Pharmaceutical Preparations/metabolism , Pharmaceutical Preparations/administration & dosage , Biological Transport
5.
AAPS PharmSciTech ; 25(5): 109, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730125

ABSTRACT

Although inhalation therapy represents a promising drug delivery route for the treatment of respiratory diseases, the real-time evaluation of lung drug deposition remains an area yet to be fully explored. To evaluate the utility of the photo reflection method (PRM) as a real-time non-invasive monitoring of pulmonary drug delivery, the relationship between particle emission signals measured by the PRM and in vitro inhalation performance was evaluated in this study. Symbicort® Turbuhaler® was used as a model dry powder inhaler. In vitro aerodynamic particle deposition was evaluated using a twin-stage liquid impinger (TSLI). Four different inhalation patterns were defined based on the slope of increased flow rate (4.9-9.8 L/s2) and peak flow rate (30 L/min and 60 L/min). The inhalation flow rate and particle emission profile were measured using an inhalation flow meter and a PRM drug release detector, respectively. The inhalation performance was characterized by output efficiency (OE, %) and stage 2 deposition of TSLI (an index of the deagglomerating efficiency, St2, %). The OE × St2 is defined as the amount delivered to the lungs. The particle emissions generated by four different inhalation patterns were completed within 0.4 s after the start of inhalation, and were observed as a sharper and larger peak under conditions of a higher flow increase rate. These were significantly correlated between the OE or OE × St2 and the photo reflection signal (p < 0.001). The particle emission signal by PRM could be a useful non-invasive real-time monitoring tool for dry powder inhalers.


Subject(s)
Dry Powder Inhalers , Lung , Particle Size , Dry Powder Inhalers/methods , Lung/metabolism , Administration, Inhalation , Drug Delivery Systems/methods , Aerosols , Powders , Drug Liberation
6.
BMJ Open Respir Res ; 11(1)2024 May 03.
Article in English | MEDLINE | ID: mdl-38702073

ABSTRACT

The major cause of mortality in people with cystic fibrosis (pwCF) is progressive lung disease characterised by acute and chronic infections, the accumulation of mucus, airway inflammation, structural damage and pulmonary exacerbations. The prevalence of Pseudomonas aeruginosa rises rapidly in the teenage years, and this organism is the most common cause of chronic lung infection in adults with cystic fibrosis (CF). It is associated with an accelerated decline in lung function and premature death. New P. aeruginosa infections are treated with antibiotics to eradicate the organism, while chronic infections require long-term inhaled antibiotic therapy. The prevalence of P. aeruginosa infections has decreased in CF registries since the introduction of CF transmembrane conductance regulator modulators (CFTRm), but clinical observations suggest that chronic P. aeruginosa infections usually persist in patients receiving CFTRm. This indicates that pwCF may still need inhaled antibiotics in the CFTRm era to maintain long-term control of P. aeruginosa infections. Here, we provide an overview of the changing perceptions of P. aeruginosa infection management, including considerations on detection and treatment, the therapy burden associated with inhaled antibiotics and the potential effects of CFTRm on the lung microbiome. We conclude that updated guidance is required on the diagnosis and management of P. aeruginosa infection. In particular, we highlight a need for prospective studies to evaluate the consequences of stopping inhaled antibiotic therapy in pwCF who have chronic P. aeruginosa infection and are receiving CFTRm. This will help inform new guidelines on the use of antibiotics alongside CFTRm.


Subject(s)
Anti-Bacterial Agents , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Pseudomonas Infections , Pseudomonas aeruginosa , Cystic Fibrosis/complications , Cystic Fibrosis/microbiology , Cystic Fibrosis/drug therapy , Humans , Pseudomonas Infections/drug therapy , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Administration, Inhalation , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Cystic Fibrosis Transmembrane Conductance Regulator/genetics
7.
Eur J Med Res ; 29(1): 285, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745325

ABSTRACT

INTRODUCTION: Hydrogen (H2) is regarded as a novel therapeutic agent against several diseases owing to its inherent biosafety. Bronchopulmonary dysplasia (BPD) has been widely considered among adverse pregnancy outcomes, without effective treatment. Placenta plays a role in defense, synthesis, and immunity, which provides a new perspective for the treatment of BPD. This study aimed to investigate if H2 reduced the placental inflammation to protect the neonatal rat against BPD damage and potential mechanisms. METHODS: We induced neonatal BPD model by injecting lipopolysaccharide (LPS, 1 µg) into the amniotic fluid at embryonic day 16.5 as LPS group. LPS + H2 group inhaled 42% H2 gas (4 h/day) until the samples were collected. We primarily analyzed the neonatal outcomes and then compared inflammatory levels from the control group (CON), LPS group and LPS + H2 group. HE staining was performed to evaluate inflammatory levels. RNA sequencing revealed dominant differentially expressed genes. Bioinformatics analysis (GO and KEGG) of RNA-seq was applied to mine the signaling pathways involved in protective effect of H2 on the development of LPS-induced BPD. We further used qRT-PCR, Western blot and ELISA methods to verify differential expression of mRNA and proteins. Moreover, we verified the correlation between the upstream signaling pathways and the downstream targets in LPS-induced BPD model. RESULTS: Upon administration of H2, the inflammatory infiltration degree of the LPS-induced placenta was reduced, and infiltration significantly narrowed. Hydrogen normalized LPS-induced perturbed lung development and reduced the death ratio of the fetus and neonate. RNA-seq results revealed the importance of inflammatory response biological processes and Toll-like receptor signaling pathway in protective effect of hydrogen on BPD. The over-activated upstream signals [Toll-like receptor 4 (TLR4), nuclear factor kappa-B p65 (NF-κB p65), Caspase1 (Casp1) and NLR family pyrin domain containing 3 (NLRP3) inflammasome] in LPS placenta were attenuated by H2 inhalation. The downstream targets, inflammatory cytokines/chemokines [interleukin (IL)-6, IL-18, IL-1ß, C-C motif chemokine ligand 2 (CCL2) and C-X-C motif chemokine ligand 1 (CXCL1)], were decreased both in mRNA and protein levels by H2 inhalation in LPS-induced placentas to rescue them from BPD. Correlation analysis displayed a positive association of TLR4-mediated signaling pathway both proinflammatory cytokines and chemokines in placenta. CONCLUSION: H2 inhalation ameliorates LPS-induced BPD by inhibiting excessive inflammatory cytokines and chemokines via the TLR4-NFκB-IL6/NLRP3 signaling pathway in placenta and may be a potential therapeutic strategy for BPD.


Subject(s)
Bronchopulmonary Dysplasia , Hydrogen , Inflammation , Lipopolysaccharides , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Placenta , Signal Transduction , Toll-Like Receptor 4 , Female , Pregnancy , Lipopolysaccharides/toxicity , Hydrogen/pharmacology , Hydrogen/therapeutic use , Animals , Placenta/metabolism , Placenta/drug effects , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Signal Transduction/drug effects , Rats , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NF-kappa B/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Administration, Inhalation , Bronchopulmonary Dysplasia/metabolism , Bronchopulmonary Dysplasia/chemically induced , Bronchopulmonary Dysplasia/drug therapy , Bronchopulmonary Dysplasia/prevention & control , Interleukin-6/metabolism , Interleukin-6/genetics , Rats, Sprague-Dawley , Disease Models, Animal
8.
PLoS One ; 19(5): e0297137, 2024.
Article in English | MEDLINE | ID: mdl-38722851

ABSTRACT

BACKGROUND: Inhaled nitric oxide (iNO) has a beneficial effect on hypoxemic respiratory failure. The increased use of concurrent iNO and milrinone was observed. We aimed to report the trends of iNO use in the past 15 years in Taiwan and compare the first-year outcomes of combining iNO and milrinone to the iNO alone in very low birth weight preterm (VLBWP) infants under mechanical ventilation. METHODS: This nationwide cohort study enrolled preterm singleton infants with birth weight <1500g treated with iNO from 2004 to 2019. Infants were divided into two groups, with a combination of intravenous milrinone (Group 2, n = 166) and without milrinone (Group 1, n = 591). After propensity score matching (PSM), each group's sample size is 124. The primary outcomes were all-cause mortality and the respiratory condition, including ventilator use and duration. The secondary outcomes were preterm morbidities within one year after birth. RESULTS: After PSM, more infants in Group 2 needed inotropes. The mortality rate was significantly higher in Group 2 than in Group 1 from one month after birth till 1 year of age (55.1% vs. 13.5%) with the adjusted hazard ratio of 4.25 (95%CI = 2.42-7.47, p <0.001). For infants who died before 36 weeks of postmenstrual age (PMA), Group 2 had longer hospital stays compared to Group 1. For infants who survived after 36 weeks PMA, the incidence of moderate and severe bronchopulmonary dysplasia (BPD) was significantly higher in Group 2 than in Group 1. For infants who survived until one year of age, the incidence of pneumonia was significantly higher in Group 2 (28.30%) compared to Group 1 (12.62%) (p = 0.0153). CONCLUSION: Combined treatment of iNO and milrinone is increasingly applied in VLBWP infants in Taiwan. This retrospective study did not support the benefits of combining iNO and milrinone on one-year survival and BPD prevention. A future prospective study is warranted.


Subject(s)
Infant, Very Low Birth Weight , Milrinone , Nitric Oxide , Humans , Milrinone/administration & dosage , Milrinone/therapeutic use , Infant, Newborn , Nitric Oxide/administration & dosage , Nitric Oxide/therapeutic use , Male , Administration, Inhalation , Female , Retrospective Studies , Taiwan/epidemiology , Infant, Premature , Respiratory Insufficiency/drug therapy , Respiratory Insufficiency/mortality , Infant , Respiration, Artificial , Treatment Outcome , Hypoxia/drug therapy
9.
Ther Adv Respir Dis ; 18: 17534666241232264, 2024.
Article in English | MEDLINE | ID: mdl-38698565

ABSTRACT

What is this summary about?This summary describes the results of a clinical study called MANDALA that was published in the New England Journal of Medicine in 2022. In the MANDALA study, researchers looked at a new asthma rescue inhaler that contains both albuterol and budesonide in a single inhaler (known as albuterol-budesonide, AIRSUPRA™). This summary describes the results for people aged 18 yearsand older who took part in the study.


Subject(s)
Albuterol , Asthma , Bronchodilator Agents , Budesonide , Drug Combinations , Nebulizers and Vaporizers , Humans , Asthma/drug therapy , Albuterol/administration & dosage , Administration, Inhalation , Bronchodilator Agents/administration & dosage , Budesonide/administration & dosage , Adult , Middle Aged , Male , Female , Treatment Outcome , Adolescent , Young Adult , Aged , Anti-Asthmatic Agents/administration & dosage
10.
Sci Rep ; 14(1): 10936, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740832

ABSTRACT

The aim of this study was to develop a dynamic model-based approach to separately quantify the exogenous and endogenous contributions to total plasma insulin concentration and to apply it to assess the effects of inhaled-insulin administration on endogenous insulin secretion during a meal test. A three-step dynamic in-silico modeling approach was developed to estimate the two insulin contributions of total plasma insulin in a group of 21 healthy subjects who underwent two equivalent standardized meal tests on separate days, one of which preceded by inhalation of a Technosphere® Insulin dose (22U or 20U). In the 30-120 min test interval, the calculated endogenous insulin component showed a divergence in the time course between the test with and without inhaled insulin. Moreover, the supra-basal area-under-the-curve of endogenous insulin in the test with inhaled insulin was significantly lower than that in the test without (2.1 ± 1.7 × 104 pmol·min/L vs 4.2 ± 1.8 × 104 pmol·min/L, p < 0.01). The percentage of exogenous insulin reaching the plasma, relative to the inhaled dose, was 42 ± 21%. The proposed in-silico approach separates exogenous and endogenous insulin contributions to total plasma insulin, provides individual bioavailability estimates, and can be used to assess the effect of inhaled insulin on endogenous insulin secretion during a meal.


Subject(s)
Computer Simulation , Insulin , Humans , Insulin/blood , Insulin/administration & dosage , Insulin/metabolism , Administration, Inhalation , Male , Adult , Female , Models, Biological , Blood Glucose/metabolism , Young Adult
11.
Ter Arkh ; 96(3): 260-265, 2024 Apr 16.
Article in Russian | MEDLINE | ID: mdl-38713041

ABSTRACT

Рost-COVID-19 syndrome (PS) is one of the medical and social problem. According to WHO, 10-20% of COVID-19 patients suffer from PS. The use of medical gases - inhaled nitric oxide (iNO) and molecular hydrogen (iH2) - may influence on the mechanisms of development PC. AIM: To evaluate the safety and efficacy of the combined inhalation of NO and H2 (iNO/iH2) in patients with respiratory manifestations of PS. MATERIALS AND METHODS: 34 patients with PS (11 men/23 women, 60.0±11.7 years) were included in the prospective open-label controlled study in parallel groups: the main group (n=17) received iNO/iH2 for 90 minutes once a day for 10 days (concentration of NO 60 ppm, H2<4% in the gas mixture), the control group (n=17) didn't receive inhalations. The period from the confirmation of COVID-19 to the start of the study was 641.8±230.5 days. The groups did not differ in the baseline parameters. The clinical symptoms (from the self-observation diary and mMRC questionnaires, "dyspnea language"), FAS, HADS, SF-36 scores, 6-minute walk test, the blood serum parameters of oxidative stress, the dynamics of the microcirculation in the eye bulbar conjunctiva were evaluated. The individual dose of iNO has chosen during a 15-minute test (the positive dynamics of the microcirculation have indicated that the dose was selected correctly). RESULTS: The decrease the symptoms severity, such as dyspnea, cough, fatigue and palpitations (p<0.005), the increase in SF-36 questionnaire scores (p=0.006) and a reducing of FAS score (p=0.001), as well as the anxiety component of HADS (p=0.02) were revealed at the end of treatment in the main group compared to the control group. We observed an improvement in distance walked (p=0.01) and the values SpO2 (p=0.04) in 6-minute walk test, the increase in the volumetric blood flow velocity in venules (p<0.001), and the date in oxidative damage (p<0.001) and antioxidant activity (p=0.03) parameters in the blood serum. CONCLUSION: The results of the study demonstrate clinical efficacy iNO/iH2 on clinical indicators, parameters of oxidative stress and microcirculation in patients with PS.


Subject(s)
COVID-19 , Hydrogen , Nitric Oxide , Humans , Female , Male , Nitric Oxide/administration & dosage , COVID-19/complications , Hydrogen/administration & dosage , Middle Aged , Administration, Inhalation , Prospective Studies , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , Treatment Outcome , Aged
13.
BMC Pulm Med ; 24(1): 213, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698403

ABSTRACT

INTRODUCTION: Ventilator-associated pneumonia (VAP) presents a significant challenge in intensive care units (ICUs). Nebulized antibiotics, particularly colistin and tobramycin, are commonly prescribed for VAP patients. However, the appropriateness of using inhaled antibiotics for VAP remains a subject of debate among experts. This study aims to provide updated insights on the efficacy of adjunctive inhaled colistin and tobramycin through a comprehensive systematic review and meta-analysis. METHODS: A thorough search was conducted in MEDLINE, EMBASE, LILACS, COCHRANE Central, and clinical trials databases ( www. CLINICALTRIALS: gov ) from inception to June 2023. Randomized controlled trials (RCTs) meeting specific inclusion criteria were selected for analysis. These criteria included mechanically ventilated patients diagnosed with VAP, intervention with inhaled Colistin and Tobramycin compared to intravenous antibiotics, and reported outcomes such as clinical cure, microbiological eradication, mortality, or adverse events. RESULTS: The initial search yielded 106 records, from which only seven RCTs fulfilled the predefined inclusion criteria. The meta-analysis revealed a higher likelihood of achieving both clinical and microbiological cure in the groups receiving tobramycin or colistin compared to the control group. The relative risk (RR) for clinical cure was 1.23 (95% CI: 1.04, 1.45), and for microbiological cure, it was 1.64 (95% CI: 1.31, 2.06). However, there were no significant differences in mortality or the probability of adverse events between the groups. CONCLUSION: Adjunctive inhaled tobramycin or colistin may have a positive impact on the clinical and microbiological cure rates of VAP. However, the overall quality of evidence is low, indicating a high level of uncertainty. These findings underscore the need for further rigorous and well-designed studies to enhance the quality of evidence and provide more robust guidance for clinical decision-making in the management of VAP.


Subject(s)
Anti-Bacterial Agents , Colistin , Pneumonia, Ventilator-Associated , Tobramycin , Humans , Pneumonia, Ventilator-Associated/drug therapy , Tobramycin/administration & dosage , Colistin/administration & dosage , Administration, Inhalation , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Randomized Controlled Trials as Topic , Intensive Care Units , Treatment Outcome , Respiration, Artificial
14.
Medicine (Baltimore) ; 103(18): e37794, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701297

ABSTRACT

BACKGROUND: This study aims to evaluate the effect of telephone and short-message follow-ups on compliance and efficacy in asthmatic children treated with inhaled corticosteroids. METHODS: A total of 120 children with moderate bronchial asthma who visited the Asthma Outpatient Department of the Affiliated Hospital of Qingdao University were enrolled in the study. They were divided randomly into 3 groups based on the type of follow-up given: a combined telephone and short-message service (Tel + SMS) group, a SMS group, and a control group. After being followed up for 12 weeks, each child's asthma control level was assessed and their lung function was measured. RESULTS: The compliance rates of children in the Tel + SMS group and SMS group were 86.49% and 56.25%, respectively. The total effective rates of these 2 groups (94.59% and 75.0%, respectively) were significantly higher than the rate of the control group (P < .01). The lung function indicators of the children in all 3 groups were better than those before treatment, although only the Tel + SMS group and SMS group improved significantly (P < .05). The lung function indicators of the large and small airways in the Tel + SMS group and the SMS group were also significantly better than those of the control group (P < .01). The results of the study suggest that 1 of the causes of poor compliance in asthmatic children is fear of an adverse reaction to inhaled corticosteroids. CONCLUSION: Telephone and short-message follow-ups can increase compliance with inhaled corticosteroid treatment and improve the asthma control levels and lung function of asthmatic children.


Subject(s)
Adrenal Cortex Hormones , Asthma , Telephone , Humans , Asthma/drug therapy , Child , Male , Female , Administration, Inhalation , Adrenal Cortex Hormones/administration & dosage , Adrenal Cortex Hormones/therapeutic use , Text Messaging , Medication Adherence/statistics & numerical data , Treatment Outcome , Respiratory Function Tests , Anti-Asthmatic Agents/administration & dosage , Anti-Asthmatic Agents/therapeutic use , Anti-Asthmatic Agents/adverse effects , Adolescent , Child, Preschool
15.
Int J Mol Sci ; 25(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38732246

ABSTRACT

Nanoparticles (NPs) have shown significant potential for pulmonary administration of therapeutics for the treatment of chronic lung diseases in a localized and sustained manner. Nebulization is a suitable method of NP delivery, particularly in patients whose ability to breathe is impaired due to lung diseases. However, there are limited studies evaluating the physicochemical properties of NPs after they are passed through a nebulizer. High shear stress generated during nebulization could potentially affect the surface properties of NPs, resulting in the loss of encapsulated drugs and alteration in the release kinetics. Herein, we thoroughly examined the physicochemical properties as well as the therapeutic effectiveness of Infasurf lung surfactant (IFS)-coated PLGA NPs previously developed by us after passing through a commercial Aeroneb® vibrating-mesh nebulizer. Nebulization did not alter the size, surface charge, IFS coating and bi-phasic release pattern exhibited by the NPs. However, there was a temporary reduction in the initial release of encapsulated therapeutics in the nebulized compared to non-nebulized NPs. This underscores the importance of evaluating the drug release kinetics of NPs using the inhalation method of choice to ensure suitability for the intended medical application. The cellular uptake studies demonstrated that both nebulized and non-nebulized NPs were less readily taken up by alveolar macrophages compared to lung cancer cells, confirming the IFS coating retention. Overall, nebulization did not significantly compromise the physicochemical properties as well as therapeutic efficacy of the prepared nanotherapeutics.


Subject(s)
Nanoparticles , Nebulizers and Vaporizers , Nanoparticles/chemistry , Humans , Administration, Inhalation , Drug Delivery Systems/methods , Lipids/chemistry , Drug Liberation , Lung/metabolism , Polymers/chemistry , Pulmonary Surfactants/chemistry , Drug Carriers/chemistry , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/drug effects , Particle Size , A549 Cells , Animals , Surface Properties
16.
Ann Transplant ; 29: e942823, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38741362

ABSTRACT

BACKGROUND The association between forced expiratory volume in 1 second (FEV1) trajectory and mortality in bronchiolitis obliterans syndrome (BOS) is not well defined. Using long-term data from a prior clinical trial of inhaled liposomal cyclosporine A (L-CsA-I) for lung transplant patients with BOS, this study examined the association between longitudinal FEV1 change and mortality. MATERIAL AND METHODS We analyzed long-term data from a clinical trial which randomized 21 patients with BOS (³20% decrease in FEV1 from personal maximum) to receive L-CsA-I plus standard-of-care (n=11) or standard-of-care (SOC) alone (n=10) for 24 weeks. A joint statistical model, combining a linear mixed model for FEV1 change and Cox regression for mortality, was utilized to examine the overall association between FEV1 trajectory and mortality during follow-up. RESULTS The 21 trial participants (10 single, 11 double lung recipients) had a mean FEV1 of 1.7±0.6 Liters at randomization. Median follow-up post-randomization was 35 months. In joint model analysis, 1 percent FEV1 decline predicted 1.076-fold increased mortality risk (95% confidence interval: -0.998 to 1.160, p=0.058). FEV1 decline was reduced by 2.6% per year in L-CsA-I patients compared to SOC (p=0.210), and overall survival at 1/3/5 years was 91%/64%/27% vs 90%/20%/0% for L-CsA-I versus SOC, respectively (p=0.164). CONCLUSIONS In BOS patients, greater longitudinal FEV1 decline predicts increased mortality. Trends towards prolonged stabilization of FEV1 and improved survival were observed with L-CsA-I receipt. Further analyses will aid in evaluating the utility of FEV1 change as a survival predictor, having implications in BOS management and future trial design.


Subject(s)
Bronchiolitis Obliterans , Cyclosporine , Lung Transplantation , Humans , Bronchiolitis Obliterans/drug therapy , Bronchiolitis Obliterans/mortality , Bronchiolitis Obliterans/etiology , Bronchiolitis Obliterans/physiopathology , Male , Female , Forced Expiratory Volume , Middle Aged , Cyclosporine/administration & dosage , Cyclosporine/therapeutic use , Administration, Inhalation , Follow-Up Studies , Adult , Pilot Projects , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/therapeutic use , Liposomes , Standard of Care , Treatment Outcome , Bronchiolitis Obliterans Syndrome
17.
Int J Biol Macromol ; 267(Pt 1): 131386, 2024 May.
Article in English | MEDLINE | ID: mdl-38582458

ABSTRACT

Verteporfin (VER), a photosensitizer used in macular degeneration therapy, has shown promise in controlling macrophage polarization and alleviating inflammation in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). However, its hydrophobicity, limited bioavailability, and side effects hinder its therapeutic potential. In this study, we aimed to enhance the therapeutic potential of VER through pulmonary nebulized drug delivery for ALI/ARDS treatment. We combined hydrophilic hyaluronic acid (HA) with an oil-in-water system containing a poly(lactic acid-co-glycolic acid) (PLGA) copolymer of VER to synthesize HA@PLGA-VER (PHV) nanoparticles with favorable surface characteristics to improve the bioavailability and targeting ability of VER. PHV possesses suitable electrical properties, a narrow size distribution (approximately 200 nm), and favorable stability. In vitro and in vivo studies demonstrated the excellent biocompatibility, safety, and anti-inflammatory responses of the PHV by suppressing M1 macrophage polarization while inducing M2 polarization. The in vivo experiments indicated that the treatment with aerosolized nano-VER (PHV) allowed more drugs to accumulate and penetrate into the lungs, improved the pulmonary function and attenuated lung injury, and mortality of ALI mice, achieving improved therapeutic outcomes. These findings highlight the potential of PHV as a promising delivery system via nebulization for enhancing the therapeutic effects of VER in ALI/ARDS.


Subject(s)
Acute Lung Injury , Drug Carriers , Hyaluronic Acid , Nanoparticles , Verteporfin , Acute Lung Injury/drug therapy , Hyaluronic Acid/chemistry , Animals , Mice , Verteporfin/administration & dosage , Verteporfin/pharmacology , Verteporfin/therapeutic use , Nanoparticles/chemistry , Drug Carriers/chemistry , RAW 264.7 Cells , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Aerosols , Male , Drug Delivery Systems , Administration, Inhalation
18.
Transpl Int ; 37: 12579, 2024.
Article in English | MEDLINE | ID: mdl-38605938

ABSTRACT

Inhaled tobramycin treatment has been associated with nephrotoxicity in some case reports, but limited data are available about serum levels and its possible systemic absorption in lung transplant recipients (LTR). We conducted a single-center, observational and retrospective study of all adult (>18 years old) LTR treated with inhaled tobramycin for at least 3 days between June 2019 and February 2022. Trough serum levels were collected and >2 µg/mL was considered a high drug level. The primary outcome assessed the presence of detectable trough levels, while the secondary outcome focused on the occurrence of acute kidney injury (AKI) in individuals with detectable trough levels. Thirty-four patients, with a median age of 60 years, were enrolled. The primary indications for treatment were donor bronchial aspirate bacterial isolation (18 patients) and tracheobronchitis (15 patients). In total, 28 patients (82%) exhibited detectable serum levels, with 9 (26%) presenting high levels (>2 µg/mL). Furthermore, 9 patients (26%) developed acute kidney injury during the treatment course. Median trough tobramycin levels were significantly elevated in invasively mechanically ventilated patients compared to non-ventilated individuals (2.5 µg/mL vs. 0.48 µg/mL) (p < 0.001). Inhaled tobramycin administration in LTRs, particularly in those requiring invasive mechanical ventilation, may result in substantial systemic absorption.


Subject(s)
Acute Kidney Injury , Tobramycin , Adult , Humans , Middle Aged , Adolescent , Tobramycin/adverse effects , Anti-Bacterial Agents/adverse effects , Cohort Studies , Retrospective Studies , Transplant Recipients , Acute Kidney Injury/chemically induced , Lung , Administration, Inhalation
19.
J Aerosol Med Pulm Drug Deliv ; 37(2): 100-110, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38640446

ABSTRACT

Inhalation of liposomes formulated with phospholipids similar to endogenous lung surfactants and lipids offers biocompatibility and versatility within the pulmonary medicine field to treat a range of diseases such as lung cancer, cystic fibrosis and lung infections. Manipulation of the physicochemical properties of liposomes enables innovative design of the carrier to meet specific delivery, release and targeting requirements. This delivery system offers several benefits: improved pharmacokinetics with reduced toxicity, enhanced therapeutic efficacy, increased delivery of poorly soluble drugs, taste masking, biopharmaceutics degradation protection and targeted cellular therapy. This section provides an overview of liposomal formulation and delivery, together with their applications for different disease states in the lung.


Subject(s)
Liposomes , Pneumonia , Humans , Liposomes/chemistry , Liposomes/metabolism , Administration, Inhalation , Lung/metabolism , Phospholipids , Drug Delivery Systems
20.
J Aerosol Med Pulm Drug Deliv ; 37(2): 90-99, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38640447

ABSTRACT

This section aims to provide a concise and contemporary technical perspective and reference resource covering dry powder inhaler (DPI) formulations. While DPI products are currently the leading inhaled products in terms of sales value, a number of confounding perspectives are presented to illustrate why they are considered surprisingly, and often frustratingly, poorly understood on a fundamental scientific level, and most challenging to design from first principles. At the core of this issue is the immense complexity of fine cohesive powder systems. This review emphasizes that the difficulty of successful DPI product development should not be underestimated and is best achieved with a well-coordinated team who respect the challenges and who work in parallel on device and formulation and with an appreciation of the handling environment faced by the patient. The general different DPI formulation types, which have evolved to address the challenges of aerosolizing fine cohesive drug-containing particles to create consistent and effective DPI products, are described. This section reviews the range of particle engineering processes that may produce micron-sized drug-containing particles and their subsequent assembly as either carrier-based or carrier-free compositions. The creation of such formulations is then discussed in the context of the material, bulk, interfacial and ultimately drug-delivery properties that are considered to affect formulation performance. A brief conclusion then considers the future DPI product choices, notably the issue of technology versus affordability in the evolving inhaler market.


Subject(s)
Drug Delivery Systems , Dry Powder Inhalers , Humans , Administration, Inhalation , Pharmaceutical Preparations , Particle Size , Powders , Aerosols
SELECTION OF CITATIONS
SEARCH DETAIL
...